Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.405
Filtrar
1.
Cell Death Dis ; 15(4): 264, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615035

RESUMEN

Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.


Asunto(s)
Trastornos del Conocimiento , Enfermedad por Cuerpos de Lewy , Animales , Ratones , Humanos , alfa-Sinucleína , Espinas Dendríticas , Factores Despolimerizantes de la Actina , Receptores CCR5/genética
2.
J Vis Exp ; (205)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38619263

RESUMEN

Brown adipose tissue (BAT)-mediated thermogenesis plays an important role in the regulation of metabolism, and its morphology and function can be greatly impacted by environmental stimuli in mice and humans. Currently, murine interscapular BAT (iBAT), which is located between two scapulae in the upper dorsal flank of mice, is the main BAT depot used by research laboratories to study BAT function. Recently, a few previously unknown BAT depots were identified in mice, including one analogous to human supraclavicular brown adipose tissue. Unlike iBAT, murine supraclavicular brown adipose tissue (scBAT) is situated in the intermediate layer of the neck and thus cannot be accessed as readily. To facilitate the study of newly identified mouse scBAT, presented herein is a protocol detailing the steps to dissect intact scBAT from postnatal and adult mice. Due to scBAT's small size relative to other adipose depots, procedures have been modified and optimized specifically for processing scBAT. Among these modifications is the use of a dissecting microscope during tissue collection to increase the precision and homogenization of frozen scBAT samples to raise the efficiency of subsequent qPCR analysis. With these optimizations, the identification of, morphological appearance of, and molecular characterization of the scBAT can be determined in mice.


Asunto(s)
Tejido Adiposo Pardo , Disección , Adulto , Humanos , Animales , Ratones , Perfilación de la Expresión Génica , Espinas Dendríticas , Cuello
3.
J Neurosci Res ; 102(4): e25319, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629777

RESUMEN

The central amygdaloid nucleus (CeA) has an ancient phylogenetic development and functions relevant for animal survival. Local cells receive intrinsic amygdaloidal information that codes emotional stimuli of fear, integrate them, and send cortical and subcortical output projections that prompt rapid visceral and social behavior responses. We aimed to describe the morphology of the neurons that compose the human CeA (N = 8 adult men). Cells within CeA coronal borders were identified using the thionine staining and were further analyzed using the "single-section" Golgi method followed by open-source software procedures for two-dimensional and three-dimensional image reconstructions. Our results evidenced varied neuronal cell body features, number and thickness of primary shafts, dendritic branching patterns, and density and shape of dendritic spines. Based on these criteria, we propose the existence of 12 morphologically different spiny neurons in the human CeA and discuss the variability in the dendritic architecture within cellular types, including likely interneurons. Some dendritic shafts were long and straight, displayed few collaterals, and had planar radiation within the coronal neuropil volume. Most of the sampled neurons showed a few to moderate density of small stubby/wide spines. Long spines (thin and mushroom) were observed occasionally. These novel data address the synaptic processing and plasticity in the human CeA. Our morphological description can be combined with further transcriptomic, immunohistochemical, and electrophysiological/connectional approaches. It serves also to investigate how neurons are altered in neurological and psychiatric disorders with hindered emotional perception, in anxiety, following atrophy in schizophrenia, and along different stages of Alzheimer's disease.


Asunto(s)
Núcleo Amigdalino Central , Masculino , Adulto , Animales , Humanos , Filogenia , Espinas Dendríticas/fisiología , Neuronas/fisiología , Interneuronas
4.
Neural Comput ; 36(5): 781-802, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658027

RESUMEN

Variation in the strength of synapses can be quantified by measuring the anatomical properties of synapses. Quantifying precision of synaptic plasticity is fundamental to understanding information storage and retrieval in neural circuits. Synapses from the same axon onto the same dendrite have a common history of coactivation, making them ideal candidates for determining the precision of synaptic plasticity based on the similarity of their physical dimensions. Here, the precision and amount of information stored in synapse dimensions were quantified with Shannon information theory, expanding prior analysis that used signal detection theory (Bartol et al., 2015). The two methods were compared using dendritic spine head volumes in the middle of the stratum radiatum of hippocampal area CA1 as well-defined measures of synaptic strength. Information theory delineated the number of distinguishable synaptic strengths based on nonoverlapping bins of dendritic spine head volumes. Shannon entropy was applied to measure synaptic information storage capacity (SISC) and resulted in a lower bound of 4.1 bits and upper bound of 4.59 bits of information based on 24 distinguishable sizes. We further compared the distribution of distinguishable sizes and a uniform distribution using Kullback-Leibler divergence and discovered that there was a nearly uniform distribution of spine head volumes across the sizes, suggesting optimal use of the distinguishable values. Thus, SISC provides a new analytical measure that can be generalized to probe synaptic strengths and capacity for plasticity in different brain regions of different species and among animals raised in different conditions or during learning. How brain diseases and disorders affect the precision of synaptic plasticity can also be probed.


Asunto(s)
Teoría de la Información , Plasticidad Neuronal , Sinapsis , Animales , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Espinas Dendríticas/fisiología , Región CA1 Hipocampal/fisiología , Modelos Neurológicos , Almacenamiento y Recuperación de la Información , Masculino , Hipocampo/fisiología , Ratas
5.
Cell Rep ; 43(3): 113906, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451812

RESUMEN

Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.


Asunto(s)
Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Ratones , Espinas Dendríticas/metabolismo , Extinción Psicológica , Miedo , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/genética , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal
6.
Mol Biol Cell ; 35(5): ar67, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507236

RESUMEN

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.


Asunto(s)
Actinas , Ubiquitina-Proteína Ligasas , Ratones , Animales , Actinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Netrina-1 , Neuronas/metabolismo , Hipocampo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo
7.
J Vis Exp ; (204)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38436357

RESUMEN

Non-aversive handling and training techniques for laboratory animals are required to facilitate experimental and routine husbandry procedures, improving both animal welfare and scientific quality. Clicker training was utilized to develop training protocols for rabbits to refine stressful routine husbandry procedures usually associated with lifting (i.e., being picked up from the floor)/restraining (i.e., being held in the arms of a human) them. Thirteen female New Zealand White rabbits were trained over three weeks. All rabbits learned the predefined goal behaviors: they followed the target stick, jumped onto the weighing scale, entered a transport box, and reared while placing their front paws onto the trainer's hand. In addition, ten animals jumped from the floor onto the sitting trainer's lap and allowed the trainer to lift their paws off the surface while sitting on the trainer's lap. For some individuals, the protocols had to be adapted by additional interim steps. At the end of the training, the rabbits reliably showed the expected goal behaviors, even after short and long training breaks. With few exceptions, a familiar person other than the trainer could elicit the goal behaviors from the rabbits (generalization), though further sessions were required for generalization. In the voluntary approach test, the rabbits preferred interacting with the trainer in the 1st trial but spent as much time with an unfamiliar person as with the trainer in the 2nd trial. The behavioral observations suggested that picking the rabbits up with the transport box, as described in the protocol, instead of restraining them with the scruff of their neck and lifting them on the arm, was less aversive. All in all, the training protocols were feasible and can serve as a refinement strategy in laboratory animal facilities. In the interest of animal welfare, the training protocols should be applied wherever possible.


Asunto(s)
Animales de Laboratorio , Aprendizaje , Conejos , Femenino , Humanos , Animales , Bienestar del Animal , Técnicas de Observación Conductual , Espinas Dendríticas
8.
Sci Rep ; 14(1): 5536, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448630

RESUMEN

We aimed to establish a new method of obtaining femur anteroposterior radiographs from live rats. We used five adult male Sprague-Dawley rats and created a femoral fracture model with an 8 mm segmental fragment. After the surgery, we obtained two femoral anteroposterior radiographs, a novel overhead method, and a traditional craniocaudal view. We obtained the overhead method three times, craniocaudal view once, and anteroposterior radiograph of the isolated femoral bone after euthanasia. We compared the overhead method and craniocaudal view with an isolated femoral anteroposterior view. We used a two-sample t-test and intraclass correlation coefficient (ICC) to estimate the intra-observer reliability. The overhead method had significantly smaller differences than the craniocaudal view for nail length (1.53 ± 1.26 vs. 11.4 ± 3.45, p < 0.001, ICC 0.96) and neck shaft angle (5.82 ± 3.8 vs. 37.8 ± 5.7, p < 0.001, ICC 0.96). No significant differences existed for intertrochanteric length/femoral head diameter (0.23 ± 0.13 vs. 0.23 ± 0.13, p = 0.96, ICC 0.98) or lateral condyle/medial condyle width (0.15 ± 0.16 vs. 0.13 ± 0.08, p = 0.82, ICC 0.99). A fragment displacement was within 0.11 mm (2.4%). The overhead method was closer to the isolated femoral anteroposterior view and had higher reliability.


Asunto(s)
Fracturas del Fémur , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Fracturas del Fémur/diagnóstico por imagen , Fémur/diagnóstico por imagen , Espinas Dendríticas
9.
Methods Mol Biol ; 2761: 57-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427229

RESUMEN

The objective of this chapter is to provide an overview of the methods used to investigate the connectivity and structure of the nervous system. These methods allow neuronal cells to be categorized according to their location, shape, and connections to other cells. The Golgi-Cox staining gives a thorough picture of all significant neuronal structures found in the brain that may be distinguished from one another. The most significant characteristic is its three-dimensional integrity since all neuronal structures may be followed continuously from one part to the next. Successions of sections of the brain's neurons are seen with the Golgi stain. The Golgi method is used to serially segment chosen brain parts, and the resulting neurons are produced from those sections.


Asunto(s)
Dendritas , Espinas Dendríticas , Espinas Dendríticas/fisiología , Dendritas/fisiología , Neuronas/fisiología , Lóbulo Temporal , Tinción con Nitrato de Plata , Hipocampo
10.
Aging Cell ; 23(4): e14087, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332648

RESUMEN

Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at ß-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.


Asunto(s)
Anfetamina , Estimulantes del Sistema Nervioso Central , Ratas , Animales , Anfetamina/farmacología , Norepinefrina/farmacología , Ratas Sprague-Dawley , Espinas Dendríticas/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Corteza Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Ratas Endogámicas F344 , Ácido Glutámico , Cognición
11.
Sci Rep ; 14(1): 3066, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321143

RESUMEN

MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.


Asunto(s)
MicroARNs , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Espinas Dendríticas/metabolismo , ARN Helicasas/metabolismo , MicroARNs/genética , Proteínas Argonautas/genética , Complejo Silenciador Inducido por ARN/metabolismo , Silenciador del Gen , ARN Mensajero/genética
12.
PLoS Comput Biol ; 20(2): e1011774, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422112

RESUMEN

Dendritic spines are the seat of most excitatory synapses in the brain, and a cellular structure considered central to learning, memory, and activity-dependent plasticity. The quantification of dendritic spines from light microscopy data is usually performed by humans in a painstaking and error-prone process. We found that human-to-human variability is substantial (inter-rater reliability 82.2±6.4%), raising concerns about the reproducibility of experiments and the validity of using human-annotated 'ground truth' as an evaluation method for computational approaches of spine identification. To address this, we present DeepD3, an open deep learning-based framework to robustly quantify dendritic spines in microscopy data in a fully automated fashion. DeepD3's neural networks have been trained on data from different sources and experimental conditions, annotated and segmented by multiple experts and they offer precise quantification of dendrites and dendritic spines. Importantly, these networks were validated in a number of datasets on varying acquisition modalities, species, anatomical locations and fluorescent indicators. The entire DeepD3 open framework, including the fully segmented training data, a benchmark that multiple experts have annotated, and the DeepD3 model zoo is fully available, addressing the lack of openly available datasets of dendritic spines while offering a ready-to-use, flexible, transparent, and reproducible spine quantification method.


Asunto(s)
Benchmarking , Espinas Dendríticas , Humanos , Reproducibilidad de los Resultados , Encéfalo , Colorantes
13.
Sci Rep ; 14(1): 4261, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383751

RESUMEN

This study introduces YOLOv8n-vegetable, a model designed to address challenges related to imprecise detection of vegetable diseases in greenhouse plant environment using existing network models. The model incorporates several improvements and optimizations to enhance its effectiveness. Firstly, a novel C2fGhost module replaces partial C2f. with GhostConv based on Ghost lightweight convolution, reducing the model's parameters and improving detection performance. Second, the Occlusion Perception Attention Module (OAM) is integrated into the Neck section to better preserve feature information after fusion, enhancing vegetable disease detection in greenhouse settings. To address challenges associated with detecting small-sized objects and the depletion of semantic knowledge due to varying scales, an additional layer for detecting small-sized objects is included. This layer improves the amalgamation of extensive and basic semantic knowledge, thereby enhancing overall detection accuracy. Finally, the HIoU boundary loss function is introduced, leading to improved convergence speed and regression accuracy. These improvement strategies were validated through experiments using a self-built vegetable disease detection dataset in a greenhouse environment. Multiple experimental comparisons have demonstrated the model's effectiveness, achieving the objectives of improving detection speed while maintaining accuracy and real-time detection capability. According to experimental findings, the enhanced model exhibited a 6.46% rise in mean average precision (mAP) over the original model on the self-built vegetable disease detection dataset under greenhouse conditions. Additionally, the parameter quantity and model size decreased by 0.16G and 0.21 MB, respectively. The proposed model demonstrates significant advancements over the original algorithm and exhibits strong competitiveness when compared with other advanced object detection models. The lightweight and fast detection of vegetable diseases offered by the proposed model presents promising applications in vegetable disease detection tasks.


Asunto(s)
Algoritmos , Verduras , Espinas Dendríticas , Membrana Eritrocítica , Conocimiento
14.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383589

RESUMEN

Synaptic plasticity is important for learning and memory formation; it describes the strengthening or weakening of connections between synapses. The postsynaptic part of excitatory synapses resides in dendritic spines, which are small protrusions on the dendrites. One of the key features of synaptic plasticity is its correlation with the size of these spines. A long-lasting synaptic strength increase [long-term potentiation (LTP)] is only possible through the reconfiguration of the actin spine cytoskeleton. Here, we develop an experimentally informed three-dimensional computational model in a moving boundary framework to investigate this reconfiguration. Our model describes the reactions between actin and actin-binding proteins leading to the cytoskeleton remodeling and their effect on the spine membrane shape to examine the spine enlargement upon LTP. Moreover, we find that the incorporation of perisynaptic elements enhances spine enlargement upon LTP, exhibiting the importance of accounting for these elements when studying structural LTP. Our model shows adaptation to repeated stimuli resulting from the interactions between spine proteins and mechanical forces.


Asunto(s)
Actinas , Espinas Dendríticas , Actinas/metabolismo , Espinas Dendríticas/metabolismo , Plasticidad Neuronal , Potenciación a Largo Plazo , Citoesqueleto de Actina/metabolismo , Sinapsis/metabolismo
15.
J Comput Neurosci ; 52(1): 1-19, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349479

RESUMEN

The vast majority of excitatory synaptic connections occur on dendritic spines. Due to their extremely small volume and spatial segregation from the dendrite, even moderate synaptic currents can significantly alter ionic concentrations. This results in chemical potential gradients between the dendrite and the spine head, leading to measurable electrical currents. In modeling electric signals in spines, different formalisms were previously used. While the cable equation is fundamental for understanding the electrical potential along dendrites, it only considers electrical currents as a result of gradients in electrical potential. The Poisson-Nernst-Planck (PNP) equations offer a more accurate description for spines by incorporating both electrical and chemical potential. However, solving PNP equations is computationally complex. In this work, diffusion currents are incorporated into the cable equation, leveraging an analogy between chemical and electrical potential. For simulating electric signals based on this extension of the cable equation, a straightforward numerical solver is introduced. The study demonstrates that this set of equations can be accurately solved using an explicit finite difference scheme. Through numerical simulations, this study unveils a previously unrecognized mechanism involving diffusion currents that amplify electric signals in spines. This discovery holds crucial implications for both numerical simulations and experimental studies focused on spine neck resistance and calcium signaling in dendritic spines.


Asunto(s)
Espinas Dendríticas , Modelos Neurológicos , Señalización del Calcio , Dendritas , Sinapsis
16.
Chemosphere ; 351: 141165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224746

RESUMEN

An increasing use of plastics in daily life leads to the accumulation of microplastics (MPs) in the environment, posing a serious threat to the ecosystem, including humans. It has been reported that MPs cause neurotoxicity, but the deleterious effect of polystyrene (PS) MPs on neuronal cytoarchitectural morphology in the prefrontal cortex (PFC) region of mice brain remains to be established. In the present study, Swiss albino male mice were orally exposed to 0.1, 1, and 10 ppm PS-MPs for 28 days. After exposure, we found a significant accumulation of PS-MPs with a decreased number of Nissl bodies in the PFC region of the entire treated group compared to the control. Morphometric analysis in the PFC neurons using Golgi-Cox staining accompanied by Sholl analysis showed a significant reduction in basal dendritic length, dendritic intersections, nodes, and number of intersections at seventh branch order in PFC neurons of 1 ppm treated PS-MPs. In neurons of 0.1 ppm treated mice, we found only decrease in the number of intersections at the seventh branch order. While 10 ppm treated neurons decreased in basal dendritic length, dendritic intersections, followed by the number of intersections at the third and seventh branch order were observed. As well, spine density on the apical secondary branches along with mRNA level of BDNF was significantly reduced in all the PS-MPs treated PFC neurons, mainly at 1 ppm versus control. These results suggest that PS-MPs exposure affects overall basal neuronal arborization, with the highest levels at 1 and 10 ppm, followed by 0.1 ppm treated neurons, which may be related to the down-regulation of BDNF expression in PFC.


Asunto(s)
Espinas Dendríticas , Poliestirenos , Humanos , Animales , Ratones , Poliestirenos/toxicidad , Microplásticos , Plásticos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Ecosistema , Corteza Prefrontal/fisiología , Plasticidad Neuronal
17.
STAR Protoc ; 5(1): 102829, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236769

RESUMEN

Dendritic spines are protrusions on dendrites forming the postsynaptic aspect of excitatory connections within the brain. Spine morphology is associated with synaptic functional strength and the spatial regulation of protein nanodomains within dendritic spines is an important determinant of spine structure and function. Here, we present a protocol to resolve the nanoscale localization of proteins within dendritic spines using structured illumination microscopy. We describe steps for the structural analysis of dendritic spine parameters, protein localization analysis, and data processing. For complete details on the use and execution of this protocol, please refer to Bjornson et al.1.


Asunto(s)
Espinas Dendríticas , Microscopía , Espinas Dendríticas/metabolismo , Microscopía/métodos , Iluminación , Neuronas/metabolismo
18.
Mol Biol Cell ; 35(3): ar43, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294869

RESUMEN

Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.


Asunto(s)
Espinas Dendríticas , N-Metilaspartato , Animales , Ratones , Autofagosomas/metabolismo , Autofagia , Espinas Dendríticas/metabolismo , N-Metilaspartato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
Transl Psychiatry ; 14(1): 29, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233378

RESUMEN

The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.


Asunto(s)
Hormona Liberadora de Corticotropina , Espinas Dendríticas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Espinas Dendríticas/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/farmacología , Hipocampo/metabolismo , Receptores de Hormona Liberadora de Corticotropina , Sinapsis/metabolismo , Mamíferos/metabolismo
20.
Nat Commun ; 15(1): 205, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177103

RESUMEN

Synapses are pivotal sites of plasticity and memory formation. Consequently, synapses are energy consumption hotspots susceptible to dysfunction when their energy supplies are perturbed. Mitochondria are stabilized near synapses via the cytoskeleton and provide the local energy required for synaptic plasticity. However, the mechanisms that tether and stabilize mitochondria to support synaptic plasticity are unknown. We identified proteins exclusively tethering mitochondria to actin near postsynaptic spines. We find that VAP, the vesicle-associated membrane protein-associated protein implicated in amyotrophic lateral sclerosis, stabilizes mitochondria via actin near the spines. To test if the VAP-dependent stable mitochondrial compartments can locally support synaptic plasticity, we used two-photon glutamate uncaging for spine plasticity induction and investigated the induced and adjacent uninduced spines. We find VAP functions as a spatial stabilizer of mitochondrial compartments for up to ~60 min and as a spatial ruler determining the ~30 µm dendritic segment supported during synaptic plasticity.


Asunto(s)
Actinas , Espinas Dendríticas , Actinas/metabolismo , Espinas Dendríticas/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...